Realization of a high speed atomic force and optical microscope

Franck Ferreyrol¹, Said Houmadi^{2,3}, Bernard Legrand⁴, Jean-Paul Salvetat², Laurent Cognet¹, Jean-Pierre Aimé³ & Brahim Lounis¹

¹LP2N, Univ. Bordeaux - CNRS - Institut d'Optique Graduate School, F-33400 Talence, France ²CRPP, CNRS, Talence, France ³CBMN, CNRS - Université Bordeaux, Talence, France ⁴LAAS, CNRS - Université Toulouse, Toulouse, France

Research axis: *innovative imaging*

In the recent years, super-resolution microscopy based on the super-localization of single molecules has made several advances in the field of optical microscopy. The robust localization of nano-objects at the nanometers scales requires exceptional mechanical stabilities over the time course of the experiments (minutes to hours). Such requirements are becoming highly similar to those of high speed atomic force microscopy. We can thus optimize the mechanical design of the microscope in order to use both techniques in a complementary way. We can for example use optical strategies to generate errors signals for real time microscope stabilization needed by both kind of microscopy imaging.